Introduction to R Week 1: The basics Louisa Smith July 13 - July 17

Let's start with... The basics

About this class

- Non-credit
- 6 weeks
- Watch the videos and do the exercises on your own (or with friends/classmates), come together for lab
- Practice by yourself in between classes
- Everything you need is at http://intro-to-r-2020.louisahsmith.com

You are not going to break anything!

About me

- Rising 5th-year PhD candidate in Epidemiology
- Started using R during my master's (so 6 years of experience); learned mostly by doing
- Problem sets, manuscripts, slides, website all in R
- Almost 100 R projects on my computer, over 1000 R scripts

You climbed this much: 473 753300028398 feet You were this fast: 7 14263601729282 mph That's an average pace of 8:24.0156031028528 per mile

I have to Google things literally every time I use R!

Plan

- Week 1: The basics
- Week 2: Figures
- Week 3: Selecting, filtering, and mutating
- Week 4: Grouping and tables
- Week 5: Functions
- Week 6: Analyze your data

An IDE for R

An *integrated development environment* is software that makes coding easier

- see objects you've imported and created
- autocomplete
- syntax highlighting
- run part or all of your code

YOUR TURN ...

Install RInstall R Studio

Packages

- Some functions are built into R
 - o mean(), lm(), table(), etc.
- They actually come from built-in packages
 - base, stats, graphics, etc.
- Anyone (yes, *anyone*) build their own package to add to the functionality of R
 - ggplot2, dplyr, data.table, survival, etc.

• You have to **install** a package once*

install.packages("survival")

• You then have to **load** the package every time you want to use it

library(survival)

*Actually, with every new major R release, but we won't worry about that.

Packages

"You only have to buy the book once, but you have to go get it out of the bookshelf every time you want to read it."

```
install.packages("survival")
library(survival)
survfit(...)
```

SEVERAL DAYS LATER ...

```
library(survival)
coxph(...)
```


Package details

- When you use install.packages, packages are downloaded from CRAN (The Comprehensive R Archive Network)
 - This is also where you downloaded R
- Packages can be hosted lots of other places, such as **Bioconductor** (for bioinformatics), and **Github** (for personal projects or while still developing)
- The folks at CRAN check to make things "work" in some sense, but don't check on the statistical methods...
 - But because R is open-source, you can always read the code yourself
- Two functions from different packages can have the same name... if you load them both, you may have some trouble

• The same people who make RStudio also are responsible for a set of packages called the tidyverse

Journal of Statistical Software

August 2014, Volume 59, Issue 10.

http://www.jstatsoft.org/

Tidy Data

tidyverse

- Running install.packages(tidyverse) actually downloads more than a dozen packages*
- Running library(tidyverse) loads: ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, forcats
- This is by no means the only way to manage your data, but I find that a lot of the time, it's the easiest and simplest way to get things done.

*See which ones at https://tidyverse.tidyverse.org

YOUR TURN ...

- Install the tidyverse
 "package"
- Load *one* of the
 - tidyverse packages

R projects

my-project/

- my-project.Rproj
- README

```
- data/
```

```
---- raw/
```

```
____ processed/
```

```
- code/
```

```
- results/
```

```
— tables/
```

```
--- figures/
--- output/
```

```
docs/
```

- An . Rproj file is mostly just a placeholder. It remembers various options, and makes it easy to open a new RStudio session that starts up in the correct working directory. You never need to edit it directly.
- A README file can just be a text file that includes notes for yourself or future users.
- I like to have a folder for raw data -- which I never touch -and a folder(s) for datasets that I create along the way.

This course

R-course/ 01-week/ — 01-week.Rproj - 01-exercises.R - 01-lab.Rmd — 01-slides.pdf - data/ l nlsy.csv 02-week/ — 02-week.Rproj - 02-exercises.R — 02-lab.Rmd — 02-slides.pdf - data/ — nhanes.xlsx 03-week/

- Each week you'll download a zip file of some or all of the things you need for the week
 You may be adding more later!
- Open the week's work by opening the .Rproj file
 - This will ensure you're in the right working directory to easily access the data, etc.

DEMONSTRATION ...

YOUR TURN ...

- Download the 01 week.zip file here
- Open up the 01 week.Rproj file

R uses <- for assignment

Create an object vals that contains and sequence of numbers:

```
# create values
vals <- c(1, 645, 329)</pre>
```

Put your cursor at the end of the line and hit ctrl/cmd + enter.

Now vals holds those values.

We can see them again by running just the name (put your cursor after the name and press ctrl/cmd + enter again).

vals		
## [1]	1 645 329	

No assignment arrow means that the object will be printed to the console.

Types of data (*classes*)

We could also create a character *vector*.

```
chars <- c("dog", "cat", "rhino")
chars</pre>
```

[1] "dog" "cat" "rhino"

Or a *logical* vector:

logs <- c(TRUE, FALSE, FALSE)
logs</pre>

[1] TRUE FALSE FALSE

We'll see more options as we go along!

Types of objects

We created *vectors* with the c() function (c stands for concatenate) We could also create a *matrix* of values with the matrix() function:

```
# turn the vector of numbers into a 2-row matrix
mat <- matrix(c(234, 7456, 12, 654, 183, 753), nrow = 2)
mat</pre>
```

[,1] [,2] [,3] ## [1,] 234 12 183 ## [2,] 7456 654 753

The numbers in square brackets are *indices*, which we can use to pull out values:

```
# extract second row
mat[2, ]
```

[1] 7456 654 753

Dataframes

We usually do analysis in R with dataframes (or some variant).

Dataframes are basically like spreadsheets: columns are variables, and rows are observations.

gss_cat

## # A tibble: 21,483 x 9									
##		year	marital	age	race	rincome	partyid	relig	denom
##		<int></int>	<fct></fct>	<int></int>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>
##	1	2000	Never marr	26	White	\$8000 to 99	Ind,near rep	Protestant	Souther
##	2	2000	Divorced	48	White	\$8000 to 99	Not str repu	Protestant	Baptist
##	3	2000	Widowed	67	White	Not applica	Independent	Protestant	No deno
##	4	2000	Never marr	39	White	Not applica	Ind,near rep	Orthodox-ch	Not app
##	5	2000	Divorced	25	White	Not applica	Not str demo	None	Not app
##	6	2000	Married	25	White	\$20000 - 24	Strong democ	Protestant	Souther
##	7	2000	Never marr	36	White	\$25000 or m	Not str repu	Christian	Not app
##	8	2000	Divorced	44	White	\$7000 to 79	Ind,near dem	Protestant	L22the6a

tibble???

tibbles are basically just pretty dataframes

as_tibble(gss_cat)[, 1:4]

tibb	le: 21,483 x 4		
year	marital	age	race
<int></int>	<fct></fct>	<int></int>	<fct></fct>
2000	Never married	26	White
2000	Divorced	48	White
2000	Widowed	67	White
2000	Never married	39	White
2000	Divorced	25	White
2000	Married	25	White
2000	Never married	36	White
2000	Divorced	44	White
2000	Married	44	White
2000	Married	47	White
with	21,473 more ro	WS	
	tibb year 2000 2000 2000 2000 2000 2000 2000 20	<pre>tibble: 21,483 x 4 year marital int> <fct> 2000 Never married 2000 Divorced 2000 Widowed 2000 Never married 2000 Divorced 2000 Married 2000 Never married 2000 Never married 2000 Married 2000 Married with 21,473 more row</fct></pre>	<pre>tibble: 21,483 x 4 year marital age int> <fct></fct></pre>

as.data.frame(gss_cat)[, 1:4]

	year		marital	age	race
1	2000	Never	married	26	White
2	2000	D	vorced	48	White
3	2000		Widowed	67	White
4	2000	Never	married	39	White
5	2000	D	vorced	25	White
6	2000		Married	25	White
7	2000	Never	married	36	White
8	2000	D	vorced	44	White
9	2000		Married	44	White
10	2000		Married	47	White
11	2000		Married	53	White
12	2000		Married	52	White
13	2000		Married	52	White
14	2000		Married	51	White

24 / 26

and tibbles are the quickest and most intuitive way to make and read a dataset

```
dat1 <- tibble(
    age = c(24, 76, 38),
    height_in = c(70, 64, 68),
    height_cm = height_in * 2.54
)
dat1</pre>
```

```
## # A tibble: 3 x 3
## age height_in height_cm
## <dbl> <dbl> <dbl> <dbl>
## 1 24 70 178.
## 2 76 64 163.
## 3 38 68 173.
```

```
dat2 <- tribble(
    ~n, ~food, ~animal,
    39, "banana", "monkey",
    21, "milk", "cat",
    18, "bone", "dog"
)
dat2
```

```
## # A tibble: 3 x 3
## n food animal
## <dbl> <chr> <chr>
## 1 39 banana monkey
## 2 21 milk cat
## 3 18 bone dog
```

YOUR TURN ...

