
Introduction to R
Week 1: The basics

Louisa Smith
July 13 - July 17

Let's start with...

The basics

2 / 26

About this class

Non-credit
6 weeks
Watch the videos and do the exercises on your own (or with friends/classmates), come
together for lab
Practice by yourself in between classes
Everything you need is at http://intro-to-r-2020.louisahsmith.com

You are not going to break anything!

3 / 26

http://intro-to-r-2020.louisahsmith.com/

Rising 5th-year PhD candidate in
Epidemiology
Started using R during my master's (so 6
years of experience); learned mostly by
doing
Problem sets, manuscripts, slides, website
all in R
Almost 100 R projects on my computer,
over 1000 R scripts

About me

I have to Google things literally every time I
use R!

4 / 26

Plan
Week 1: The basics
Week 2: Figures
Week 3: Selecting, �ltering, and mutating
Week 4: Grouping and tables
Week 5: Functions
Week 6: Analyze your data

5 / 26

An IDE for R
An integrated development environment is
software that makes coding easier

see objects you've imported and created
autocomplete
syntax highlighting
run part or all of your code

Setup...

6 / 26

1
Your turn...

Install R
Install R Studio

7 / 26

8 / 26

Packages

Some functions are built into R
mean(), lm(), table(), etc.

They actually come from built-in packages
base, stats, graphics, etc.

Anyone (yes, anyone) build their own package to add to the functionality of R
ggplot2, dplyr, data.table, survival, etc.

Image from Zhi Yang
9 / 26

https://zhiyang.netlify.app/post/hexwall/

Packages

You have to install a package once*

install.packages("survival")

You then have to load the package every time you want to use it

library(survival)

*Actually, with every new major R release, but we won't worry about that.
10 / 26

Packages
"You only have to buy the book once, but you have to go get it out of the bookshelf every
time you want to read it."

install.packages("survival")
library(survival)
survfit(...)

Several days later...

library(survival)
coxph(...)

Demonstration...

11 / 26

Package details

When you use install.packages, packages are downloaded from CRAN (The
Comprehensive R Archive Network)

This is also where you downloaded R
Packages can be hosted lots of other places, such as Bioconductor (for bioinformatics),
and Github (for personal projects or while still developing)
The folks at CRAN check to make things "work" in some sense, but don't check on the
statistical methods...

But because R is open-source, you can always read the code yourself
Two functions from different packages can have the same name... if you load them both,
you may have some trouble

12 / 26

https://cran.r-project.org/
https://www.bioconductor.org/
https://www.github.com/

tidyverse

The same people who make RStudio also are responsible for a set of packages called the
tidyverse

13 / 26

Running install.packages(tidyverse)
actually downloads more than a dozen
packages*
Running library(tidyverse) loads:
ggplot2, dplyr, tidyr, readr, purrr, tibble,

stringr, forcats
This is by no means the only way to manage
your data, but I find that a lot of the time, it's
the easiest and simplest way to get things
done.

tidyverse

*See which ones at https://tidyverse.tidyverse.org
14 / 26

https://tidyverse.tidyverse.org/

2
Your turn...

Install the tidyverse
"package"
Load one of the
tidyverse packages

15 / 26

my-project/
 ├─ my-project.Rproj
 ├─ README
 ├─ data/
 │ ├── raw/
 │ └── processed/
 ├─ code/
 ├─ results/
 │ ├── tables/
 │ ├── figures/
 │ └── output/
 └─ docs/

An .Rproj file is mostly just a placeholder. It remembers
various options, and makes it easy to open a new RStudio
session that starts up in the correct working directory. You
never need to edit it directly.
A README file can just be a text file that includes notes for
yourself or future users.
I like to have a folder for raw data -- which I never touch --
and a folder(s) for datasets that I create along the way.

R projects

16 / 26

R-course/
 ├─ 01-week/
 │ ├── 01-week.Rproj
 │ ├── 01-exercises.R
 │ ├── 01-lab.Rmd
 │ ├── 01-slides.pdf
 │ └── data/
 │ └── nlsy.csv
 ├─ 02-week/
 │ ├── 02-week.Rproj
 │ ├── 02-exercises.R
 │ ├── 02-lab.Rmd
 │ ├── 02-slides.pdf
 │ └── data/
 │ └── nhanes.xlsx
 ├── 03-week/

Each week you'll download a zip file of some or all of the
things you need for the week

You may be adding more later!
Open the week's work by opening the .Rproj file

This will ensure you're in the right working directory to
easily access the data, etc.

This course

Demonstration...

17 / 26

3
Your turn...

Download the 01-
week.zip �le here
Open up the 01-
week.Rproj �le

18 / 26

http://intro-to-r-2020.louisahsmith.com/exercises/01-week.zip

R uses <- for assignment
Create an object vals that contains and sequence of numbers:

create values
vals <- c(1, 645, 329)

Put your cursor at the end of the line and hit ctrl/cmd + enter.
Now vals holds those values.
We can see them again by running just the name (put your cursor after the name and press ctrl/cmd +
enter again).

vals

[1] 1 645 329

No assignment arrow means that the object will be
printed to the console. 19 / 26

Types of data (classes)
We could also create a character vector:

chars <- c("dog", "cat", "rhino")
chars

[1] "dog" "cat" "rhino"

Or a logical vector:

logs <- c(TRUE, FALSE, FALSE)
logs

[1] TRUE FALSE FALSE

We'll see more options as we go along!

20 / 26

Types of objects
We created vectors with the c() function (c stands for concatenate)
We could also create a matrix of values with the matrix() function:

turn the vector of numbers into a 2-row matrix
mat <- matrix(c(234, 7456, 12, 654, 183, 753), nrow = 2)
mat

[,1] [,2] [,3]
[1,] 234 12 183
[2,] 7456 654 753

The numbers in square brackets are indices, which we can use to pull out values:

extract second row
mat[2,]

[1] 7456 654 753
21 / 26

Dataframes
We usually do analysis in R with dataframes (or some variant).
Dataframes are basically like spreadsheets: columns are variables, and rows are
observations.

gss_cat

A tibble: 21,483 x 9
year marital age race rincome partyid relig denom
<int> <fct> <int> <fct> <fct> <fct> <fct> <fct>
1 2000 Never marr… 26 White $8000 to 99… Ind,near rep Protestant Southern
2 2000 Divorced 48 White $8000 to 99… Not str repu… Protestant Baptist-
3 2000 Widowed 67 White Not applica… Independent Protestant No denom
4 2000 Never marr… 39 White Not applica… Ind,near rep Orthodox-ch… Not appl
5 2000 Divorced 25 White Not applica… Not str demo… None Not appl
6 2000 Married 25 White $20000 - 24… Strong democ… Protestant Southern
7 2000 Never marr… 36 White $25000 or m… Not str repu… Christian Not appl
8 2000 Divorced 44 White $7000 to 79… Ind,near dem Protestant Lutheran22 / 26

tibble???

23 / 26

as_tibble(gss_cat)[, 1:4]

A tibble: 21,483 x 4
 year marital age race
 <int> <fct> <int> <fct>
 1 2000 Never married 26 White
 2 2000 Divorced 48 White
 3 2000 Widowed 67 White
 4 2000 Never married 39 White
 5 2000 Divorced 25 White
 6 2000 Married 25 White
 7 2000 Never married 36 White
 8 2000 Divorced 44 White
 9 2000 Married 44 White
10 2000 Married 47 White
… with 21,473 more rows

as.data.frame(gss_cat)[, 1:4]

 year marital age race
1 2000 Never married 26 White
2 2000 Divorced 48 White
3 2000 Widowed 67 White
4 2000 Never married 39 White
5 2000 Divorced 25 White
6 2000 Married 25 White
7 2000 Never married 36 White
8 2000 Divorced 44 White
9 2000 Married 44 White
10 2000 Married 47 White
11 2000 Married 53 White
12 2000 Married 52 White
13 2000 Married 52 White
14 2000 Married 51 White

tibbles are basically just pretty dataframes

24 / 26

dat1 <- tibble(
 age = c(24, 76, 38),
 height_in = c(70, 64, 68),
 height_cm = height_in * 2.54
)
dat1

A tibble: 3 x 3
age height_in height_cm
<dbl> <dbl> <dbl>
1 24 70 178.
2 76 64 163.
3 38 68 173.

dat2 <- tribble(
 ~n, ~food, ~animal,
 39, "banana", "monkey",
 21, "milk", "cat",
 18, "bone", "dog"
)
dat2

A tibble: 3 x 3
n food animal
<dbl> <chr> <chr>
1 39 banana monkey
2 21 milk cat
3 18 bone dog

and tibbles are the quickest and most intuitive
way to make and read a dataset

25 / 26

4
Your turn...

Work through the
code in 01-week/01-
todo.R

26 / 26

