
Introduction to R
Week 2: Making �gures

Louisa Smith
July 20 - July 24

Let's make our data...

beautiful

2 / 50

#goals

3 / 50

Basic structure of a ggplot
ggplot(data = {data}) +
 <geom>(aes(x = {xvar}, y = {yvar}, <characteristic> = {othvar}, ...),
 <characteristic> = "value", ...) + ...

{data}: must be a dataframe (or tibble!)
{xvar} and {yvar} are the names (unquoted) of the variables on the x- and y-axes
{othvar} is some other unquoted variable name that defines a grouping or other characteristic
you want to map to an aesthetic
<geom>: the geometric feature you want to use; e.g., point (scatterplot), line, histogram, bar, etc.
<characteristic>: you can map {othvar} or a fixed "value" to any of a number of aesthetic
features of the figure; e.g., color, shape, size, linetype, etc.
"value": a fixed value that defines some characteristic of the figure; e.g., "red", 10, "dashed"
... : there are numerous other options to discover!

4 / 50

ggplot(data = nlsy, aes(x = income,
 y = age_bir, col = factor(sex))
) +
 geom_point(alpha = 0.1) +
 scale_color_brewer(palette = "Set1",
 name = "Sex",
 labels = c("Male", "Female")) +
 scale_x_log10(labels =
 scales::dollar) +
 geom_smooth(aes(
 group = factor(sex)),
 method = "lm") +
 facet_grid(rows = vars(race_eth),
 labeller = labeller(race_eth = c(
 "1" = "Hispanic",
 "2" = "Black",
 "3" = "Non-Black, Non-Hispanic"))) +
 theme_minimal() +
 theme(legend.position = "top") +
 labs(title = "Relationship between income and
 subtitle = "by sex and race",
 x = "Income",
 y = "Age at first birth")

5 / 50

Basic example
ggplot(data = {data}) +
 <geom>(aes(x = {xvar}, y = {yvar}, <characteristic> = {othvar}, ...),
 <characteristic> = "value", ...) +
 ...

6 / 50

Basic example
ggplot(data = nlsy) +
 <geom>(aes(x = {xvar}, y = {yvar}, <characteristic> = {othvar}, ...),
 <characteristic> = "value", ...) +
 ...

The data = argument must be a dataframe (or tibble)

7 / 50

Basic example
ggplot(data = nlsy) +
 geom_point(aes(x = {xvar}, y = {yvar}, <characteristic> = {othvar}, ...),
 <characteristic> = "value", ...) +
 ...

geom_point() gives us a scatterplot

Other helpful "geoms" include geom_line(),
geom_bar(), geom_histogram(),

geom_boxplot()

8 / 50

Image via https://nbisweden.github.io/RaukR-2019/ggplot/presentation/ggplot_presentation.html
9 / 50

https://nbisweden.github.io/RaukR-2019/ggplot/presentation/ggplot_presentation.html

Basic example
ggplot(data = nlsy) +
 geom_point(aes(x = income, y = age_bir, <characteristic> = {othvar}, ...),
 <characteristic> = "value", ...) +
 ...

geom_point() requires an x = and a y = variable
Other geoms require other arguments

For example, geom_histogram() only requires an x = variable

Notice that the variable names are not in
quotation marks

10 / 50

Basic example
ggplot(data = nlsy, aes(x = income, y = age_bir, <characteristic> = {othvar}, ...))
 geom_point(<characteristic> = "value", ...) +
 ...

We could also put the aesthetics (the variables that are being mapped to the plot) in the
initial ggplot() function

This will be helpful when we want multiple geoms (say, points and a line)

11 / 50

ggplot(data = nlsy) +
geom_point(aes(x = income, y = age_bir))

What if we want to change the color of the
points?

12 / 50

ggplot(data = nlsy) +
geom_point(aes(x = income, y = age_bir),
 color = "blue")

When we put color = outside the aes(), it
means we're giving it a specific color value
that applies to all the points.

13 / 50

ggplot(data = nlsy) +
geom_point(aes(x = income, y = age_bir),
 color = "#3d93c8")

One of my favorite color
resources:

https://www.color-
hex.com

14 / 50

https://www.color-hex.com/

ggplot(data = nlsy) +
geom_point(aes(x = income, y = age_bir,
 color = eyesight))

When we put color = inside the aes() --
with no quotation marks -- it means we're
telling it how it should assign colors.
Here we're plotting the values according to
eyesight, where 1 is excellent and 5 is poor.

But they're kind of hard to distinguish!

15 / 50

ggplot(data = nlsy) +
geom_point(aes(x = income, y = age_bir,
 color = eyesight)) +
scale_color_gradient(low = "green",
 high = "purple")

We can map the values of eyesight to a
different continuous scale using
scale_color_gradient()

You can read lots more about this function
here, so you don't have to have such ugly
color scales!

16 / 50

https://ggplot2.tidyverse.org/reference/scale_gradient.html

ggplot(data = nlsy) +
geom_point(aes(x = income, y = age_bir,
 color = eyesight))

Returning to the nice blues, we think: But
wait! The variable eyesight isn't really
continuous: it has 5 discrete values.

17 / 50

ggplot(data = nlsy) +
geom_point(aes(x = income, y = age_bir,
 color = factor(eyesight)))

Returning to the nice blues, we think: But
wait! The variable eyesight isn't really
continuous: it has 5 discrete values.
We can make R treat it as a "factor", or
categorical variable, with the factor()
function

We'll see lots more on
factors later!

18 / 50

ggplot(data = nlsy) +
geom_point(aes(x = income, y = age_bir,
 color = factor(eyesight))) +
scale_color_manual(
 values = c("blue", "purple", "red",
"green", "yellow"))

Now if we want to change the color
scheme, we have to use a different
function.
Before we used scale_color_gradient,
now scale_color_manual.

There are a lot of options that follow the
same naming scheme.

19 / 50

ggplot(data = nlsy) +
geom_point(aes(x = income, y = age_bir,
 color = factor(eyesight))) +
scale_color_brewer(palette = "Set1")

There are tons of different options in R for
color palettes.
You can play around with those in the
RColorBrewer package here:
http://colorbrewer2.org

You can access the scales in that package with
scale_color_brewer(), or see them all after
installing the package with
RColorBrewer::display.brewer.all()

20 / 50

http://colorbrewer2.org/

ggplot(data = nlsy) +
geom_point(aes(x = income, y = age_bir,
 color = factor(eyesight))) +
scale_color_brewer(palette = "Set1",
 name = "Eyesight",
 labels = c("Excellent",
"Very Good",
"Good",
"Fair",
"Poor"))

Each of the scale_color_x() functions has
a lot of the same arguments.

Make sure if you are
labelling a factor

variable in a plot like this
that you get the names

right!

21 / 50

1
Your turn...

Exercises 2.1: Make a fancy
scatterplot showing the
relationship between
sleep on weekdays and on
weekends.

22 / 50

Facets
One of the most useful features of ggplot2 is the ability to "facet" a graph by splitting it up
according to the values of some variable.
You might use this to show results for a lot of outcomes or exposures at once, for example,
or see how some relationship differs by something like age or geographic region

23 / 50

ggplot(data = nlsy) +
 geom_bar(aes(x = nsibs)) +
 labs(x = "Number of siblings")

We'll introduce bar graphs at the same
time!
Notice how we only need an x = argument
- the y-axis is automatically the count with
this geom.

24 / 50

ggplot(data = nlsy) +
 geom_bar(aes(x = nsibs)) +
 labs(x = "Number of siblings") +
 facet_grid(cols = vars(region))

The facet_grid() function splits up the
data according to a variable(s).
Here we've split it by region into columns.

25 / 50

ggplot(data = nlsy) +
 geom_bar(aes(x = nsibs)) +
 labs(x = "Number of siblings") +
 facet_grid(rows = vars(region))

Since this is hard to read, we'll probably
want to split by rows instead.

26 / 50

ggplot(data = nlsy) +
 geom_bar(aes(x = nsibs)) +
 labs(x = "Number of siblings") +
 facet_grid(rows = vars(region),
 margins = TRUE)

We can also add a row for all of the data
together.

27 / 50

ggplot(data = nlsy) +
 geom_bar(aes(x = nsibs)) +
 labs(x = "Number of siblings") +
 facet_grid(rows = vars(region),
 margins = TRUE,
 scales = "free_y")

This squishes the other rows though! We
can allow them all to have their own axis
limits with the scales = argument.
Other options are "free_x" if we want to
allow the x-axis scale to vary, or just "free"
to combine both.

28 / 50

ggplot(data = nlsy) +
 geom_bar(aes(x = nsibs)) +
 labs(x = "Number of siblings") +
 facet_wrap(vars(region))

We can use facet_wrap() instead, if we
want to use both multiple rows and
columns for all the values of a variable.

29 / 50

ggplot(data = nlsy) +
 geom_bar(aes(x = nsibs)) +
 labs(x = "Number of siblings") +
 facet_wrap(vars(region),
 ncol = 3)

It tries to make a good
decision, but you can
override how many
columns you want!

30 / 50

Wait, these look like histograms!
When we have a variable with a lot of possible values, we may want to bin them with a
histogram

ggplot(nlsy) +
 geom_histogram(aes(x = income))

31 / 50

stat_bin() using bins = 30. Pick better value
with binwidth.
We used discrete values with geom_bar(), but with geom_histogram() we're combining
values: the default is into 30 bins.
This is one of the most common warning messages I get in R!

32 / 50

ggplot(data = nlsy) +
 geom_histogram(aes(x = income),
 bins = 10)

We can use bins =
instead, if we want!

33 / 50

ggplot(data = nlsy) +
 geom_histogram(aes(x = income),
 bins = 100)

Be aware that you may
interpret your data

differently depending on
how you bin it!

34 / 50

ggplot(data = nlsy) +
 geom_histogram(aes(x = income),
 binwidth = 1000)

Sometimes the bin width
actually has some

meaning

35 / 50

ggplot(data = nlsy) +
 geom_histogram(aes(x = income),
 bins = 100) +
 scale_x_log10()

There are a lot of scale_x_() and scale_y_() functions
for you to explore!

The naming schemes
work similarly to the

scale_color ones, just
with different options!

36 / 50

2
Your turn...

Exercises 2.2: Make a fancy
histogram showing the
distribution of income in
this data.

37 / 50

Finally, themes to make our plots prettier
You probably recognize the ggplot theme. But did you know you can trick people into
thinking you made your figures in Stata?

38 / 50

Let's store our plot first.
Plots work just like other R objects, meaning we can use
the assignment arrow.

p <- ggplot(data = nlsy) +
 geom_boxplot(aes(
 x = factor(sleep_wknd),
 y = sleep_wkdy,
 fill = factor(sleep_wknd))) +
 scale_fill_discrete(guide = FALSE) +
 labs(x = "hours slept on weekends",
 y = "hours slept on weekends",
 title = "The more people sleep on weekend
 subtitle = "According to NLSY data")

p

Can you figure out what
each chunk of this code
is doing to the figure?

39 / 50

p +
 theme_minimal()

We can change the overall theme

Since we stored
the plot as p, it's
easy to add on /

try different things

40 / 50

p +
 theme_dark()

41 / 50

p +
 theme_classic()

42 / 50

p +
 theme_void()

43 / 50

p +
 ggthemes::theme_fivethirtyeight()

Other packages may contain themes.

44 / 50

p +
 ggthemes::theme_excel_new()

In case you miss Excel....

45 / 50

p +
 ggthemes::theme_gdocs()

46 / 50

p +
 louisahstuff::my_theme()

You can even make your
own!

47 / 50

Finally, save it!
If your data changes, you can easily run the whole script again:

library(tidyverse)
dataset <- read_csv("dataset.csv")
ggplot(dataset) +
 geom_point(aes(x = xvar, y = yvar))
`ggsave`(filename = "scatterplot.pdf")

The ggsave() function will automatically save the most recent plot in your output.
To be safe, you can store your plot, e.g., p <- ggplot(...) + ... and then

ggsave(filename = "scatterplot.pdf", plot = p)

48 / 50

More resources

Cheat sheet:
https://www.rstudio.com/resources/cheatsheets/#ggplot2
Catalog: http://shiny.stat.ubc.ca/r-graph-catalog/
Cookbook: http://www.cookbook-r.com/Graphs/
Official package reference:
https://ggplot2.tidyverse.org/index.html
List of themes and instructions to make your own:
https://www.datanovia.com/en/blog/ggplot-themes-
gallery/

49 / 50

https://www.rstudio.com/resources/cheatsheets/#ggplot2
http://shiny.stat.ubc.ca/r-graph-catalog/
http://www.cookbook-r.com/Graphs/
https://ggplot2.tidyverse.org/index.html
https://www.datanovia.com/en/blog/ggplot-themes-gallery/

3
Your turn...

Exercises 2.3: Recreate this
plot!

50 / 50

