Let's
wrangle
our data
nlsy$region_factor <- factor(nlsy$region)nlsy$income <- round(nlsy$income)nlsy$age_bir_cent <- nlsy$age_bir - mean(nlsy$age_bir)nlsy$index <- 1:nrow(nlsy)nlsy$slp_wkdy_cat <- ifelse(nlsy$sleep_wkdy < 5, "little", ifelse(nlsy$sleep_wkdy < 7, "some", ifelse(nlsy$sleep_wkdy < 9, "ideal", ifelse(nlsy$sleep_wkdy < 12, "lots", NA) ) ) )
mutate()library(tidyverse)# mutate() is from dplyrnlsy <- mutate(nlsy, # dataset region_factor = factor(region), # new variables income = round(income), age_bir_cent = age_bir - mean(age_bir), index = row_number() # could make as many as we want.... )
mutate() tips and tricksYou still need to store your dataset somewhere, so make sure to include the assignment arrow
nlsy_new <- mutate(nlsy, age_bir_cent = age_bir - mean(age_bir), age_bir_stand = age_bir_cent / sd(age_bir_cent) )case_when()I used to write endless strings of ifelse() statements

Are you confused yet?!
case_when()nlsy <- mutate(nlsy, slp_cat_wkdy = case_when(sleep_wkdy < 5 ~ "little", sleep_wkdy < 7 ~ "some", sleep_wkdy < 9 ~ "ideal", sleep_wkdy < 12 ~ "lots", TRUE ~ NA_character_ # >= 12 ) )# note that table doesn't show NAs! can be dangerous!table(nlsy$slp_cat_wkdy, nlsy$sleep_wkdy)
## ## 0 2 3 4 5 6 7 8 9 10 11 12 13## ideal 0 0 0 0 0 0 357 269 0 0 0 0 0## little 1 4 14 48 0 0 0 0 0 0 0 0 0## lots 0 0 0 0 0 0 0 0 32 14 1 0 0## some 0 0 0 0 136 326 0 0 0 0 0 0 0case_when() syntaxTRUE or FALSE) on the left-hand side of the ~sleep_wkdy < 5TRUE, variable will take on value of whatever is on the right-hand side of the ~~ "little"TRUE ~ {something}, which every observation will get if everything else is FALSETRUE ~ NA_character_NA_character_, NA_real_ generally)case_when() examplenlsy <- mutate(nlsy, total_sleep = case_when( sleep_wknd > 8 & sleep_wkdy > 8 ~ 1, sleep_wknd + sleep_wkdy > 15 ~ 2, sleep_wknd - sleep_wkdy > 3 ~ 3, TRUE ~ NA_real_ ) )
sleep_wknd = 8 and sleep_wkdy = 4 go? sleep_wknd = 11 and sleep_wkdy = 4? sleep_wknd = 7 and sleep_wkdy = 7?1
Your turn...
Exercises 3.1: Make some new variables!
Let's look at the variable we made describing someone's weekday sleeping habits:
nlsy <- mutate(nlsy, slp_cat_wkdy = case_when( sleep_wkdy < 5 ~ "little", sleep_wkdy < 7 ~ "some", sleep_wkdy < 9 ~ "ideal", sleep_wkdy < 12 ~ "lots", TRUE ~ NA_character_ ) )summary(nlsy$slp_cat_wkdy)
## Length Class Mode ## 1205 character characterIf the values are the desired labels, it's pretty straightforward: just use factor()
# I'm just going to replace this variable, instead of making a new one, # by giving it the same name a beforenlsy <- mutate(nlsy, slp_cat_wkdy = factor(slp_cat_wkdy))summary(nlsy$slp_cat_wkdy)
## ideal little lots some NA's ## 626 67 47 462 3forcats packagefct_ so they're easy to find using tab-complete!library(tidyverse)
The fct_relevel() function allows us just to rewrite the names of the categories out in the order we want them (safely).
nlsy <- mutate(nlsy, slp_cat_wkdy_ord = fct_relevel(slp_cat_wkdy, "little", "some", "ideal", "lots" ) )
summary(nlsy$slp_cat_wkdy_ord)
## little some ideal lots NA's ## 67 462 626 47 3nlsy <- mutate(nlsy, slp_cat_wkdy_ord2 = fct_relevel(slp_cat_wkdy, "little", "soome", "ideal", "lots" ) )
## Warning: Unknown levels in f: soomesummary(nlsy$slp_cat_wkdy_ord2)
## little ideal lots some NA's ## 67 626 47 462 3While amount of sleep has an inherent ordering, region doesn't. Also, the region variable is numeric, not a character!
From the codebook, I know that:
nlsy <- mutate(nlsy, region_fact = factor(region), region_fact = fct_recode(region_fact, "Northeast" = "1", "North Central" = "2", "South" = "3", "West" = "4"))summary(nlsy$region_fact)
## Northeast North Central South West ## 206 333 411 255So now I can reorder them as I wish -- how about from most people to least?
nlsy <- mutate(nlsy, region_fact = fct_infreq(region_fact))summary(nlsy$region_fact)
## South North Central West Northeast ## 411 333 255 206Or the reverse of that?
nlsy <- mutate(nlsy, region_fact = fct_rev(region_fact))summary(nlsy$region_fact)
## Northeast West North Central South ## 206 255 333 411Recall that we made it so that the sleep variable had missing values, perhaps because we thought they were outliers:
nlsy <- mutate(nlsy, slp_cat_wkdy_out = fct_explicit_na(slp_cat_wkdy, na_level = "outlier"))summary(nlsy$slp_cat_wkdy_out)
## ideal little lots some outlier ## 626 67 47 462 3Or maybe we want to combine some levels that don't have a lot of observations in them:
nlsy <- mutate(nlsy, slp_cat_wkdy_comb = fct_collapse(slp_cat_wkdy, "less" = c("little", "some"), "more" = c("ideal", "lots") ) )summary(nlsy$slp_cat_wkdy_comb)
## more less NA's ## 673 529 3Or we can have R choose which ones to combine based on how few observations they have:
nlsy <- mutate(nlsy, slp_cat_wkdy_lump = fct_lump(slp_cat_wkdy, n = 2))summary(nlsy$slp_cat_wkdy_lump)
## ideal some Other NA's ## 626 462 114 3fct_ functions in the package. The sky's the limit when it comes to manipulating your categorical variables in R!2
Your turn...
Exercises 3.2: Make some new factors!
You don't want to keep them all. You'll get confused, and when you go to summarize your data it will take pages.
Luckily there's an easy way to select the variables you want: select()!
nlsy_subs <- select(nlsy, id, income, eyesight, sex, region)nlsy_subs
## # A tibble: 1,205 x 5## id income eyesight sex region## <dbl> <dbl> <dbl> <dbl> <dbl>## 1 3 22390 1 2 1## 2 6 35000 2 1 1## 3 8 7227 2 2 1## 4 16 48000 3 2 1## 5 18 4510 3 1 3## 6 20 50000 2 2 1## # β¦ with 1,199 more rowsselect() syntaxmutate(), the first argument is the dataset you want to select from!) or a minus sign (-)select(nlsy_subs, !c(id, region))
## # A tibble: 1,205 x 3## income eyesight sex## <dbl> <dbl> <dbl>## 1 22390 1 2## 2 35000 2 1## 3 7227 2 2## 4 48000 3 2## 5 4510 3 1## # β¦ with 1,200 more rowsall_of()Notice that the variable names we used in select() weren't in quotation marks.
Let's say you have a list of column names that you want. Then you can use all_of() to choose them.
cols_I_want <- c("age_bir", "nsibs", "region")select(nlsy, all_of(cols_I_want))
## # A tibble: 1,205 x 3## age_bir nsibs region## <dbl> <dbl> <dbl>## 1 19 3 1## 2 30 1 1## 3 17 7 1## 4 31 3 1## 5 19 2 3## # β¦ with 1,200 more rowsIf you don't want an error if they don't exist, use any_of().
Do you have a lot of variables that are alike in some way? And you want to find all of them? Try:
starts_with()ends_with()contains()matches() (like contains, but for regular expressions)num_range() (for patterns like x01, x02, ...)select(nlsy, starts_with("slp"))
## # A tibble: 1,205 x 7## slp_wkdy_cat slp_cat_wkdy slp_cat_wkdy_ord slp_cat_wkdy_or⦠slp_cat_wkdy_out## <chr> <fct> <fct> <fct> <fct> ## 1 some some some some some ## 2 some some some some some ## # ⦠with 1,203 more rows, and 2 more variables: slp_cat_wkdy_comb <fct>,## # slp_cat_wkdy_lump <fct>Sometimes you don't want to get rid of the other variables, you just want to move things around. Then use relocate():
Let's move id to be the first column:
nlsy <- relocate(nlsy, id)nlsy
## # A tibble: 1,205 x 26## id glasses eyesight sleep_wkdy sleep_wknd nsibs samp race_eth sex region income## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 3 0 1 5 7 3 5 3 2 1 22390## 2 6 1 2 6 7 1 1 3 1 1 35000## 3 8 0 2 7 9 7 6 3 2 1 7227## 4 16 1 3 6 7 3 5 3 2 1 48000## # β¦ with 1,201 more rows, and 15 more variables: res_1980 <dbl>, res_2002 <dbl>,## # age_bir <dbl>, region_factor <fct>, age_bir_cent <dbl>, index <int>, slp_wkdy_cat <chr>,## # slp_cat_wkdy <fct>, total_sleep <dbl>, slp_cat_wkdy_ord <fct>, slp_cat_wkdy_ord2 <fct>,## # region_fact <fct>, slp_cat_wkdy_out <fct>, slp_cat_wkdy_comb <fct>,## # slp_cat_wkdy_lump <fct>You can relocate multiple variables to the beginning, or specify where they should show up
Let's move sex and region to be after id:
relocate(nlsy, sex, region, .after = id)
## # A tibble: 1,205 x 26## id sex region glasses eyesight sleep_wkdy sleep_wknd nsibs samp race_eth income## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 3 2 1 0 1 5 7 3 5 3 22390## 2 6 1 1 1 2 6 7 1 1 3 35000## 3 8 2 1 0 2 7 9 7 6 3 7227## 4 16 2 1 1 3 6 7 3 5 3 48000## 5 18 1 3 0 3 10 10 2 1 3 4510## # β¦ with 1,200 more rows, and 15 more variables: res_1980 <dbl>, res_2002 <dbl>,## # age_bir <dbl>, region_factor <fct>, age_bir_cent <dbl>, index <int>, slp_wkdy_cat <chr>,## # slp_cat_wkdy <fct>, total_sleep <dbl>, slp_cat_wkdy_ord <fct>, slp_cat_wkdy_ord2 <fct>,## # region_fact <fct>, slp_cat_wkdy_out <fct>, slp_cat_wkdy_comb <fct>,## # slp_cat_wkdy_lump <fct>This can get a bit confusing (and "best practices" have recently changed), so we won't go into details, but you can put all these tools together:
nlsy <- mutate(rowwise(nlsy), sleep_avg = mean(c_across(starts_with("sleep"))))select(nlsy, starts_with("sleep"))
## # A tibble: 1,205 x 3## sleep_wkdy sleep_wknd sleep_avg## <dbl> <dbl> <dbl>## 1 5 7 6 ## 2 6 7 6.5## 3 7 9 8 ## 4 6 7 6.5## 5 10 10 10 ## 6 7 8 7.5## # β¦ with 1,199 more rowsnlsy <- nlsy %>% mutate(across(starts_with("sleep"), ~ .x * 60, .names = "{col}_mins"))select(nlsy, starts_with("sleep"))
## # A tibble: 1,205 x 6## sleep_wkdy sleep_wknd sleep_avg sleep_wkdy_mins sleep_wknd_mins sleep_avg_mins## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 5 7 6 300 420 360## 2 6 7 6.5 360 420 390## 3 7 9 8 420 540 480## 4 6 7 6.5 360 420 390## 5 10 10 10 600 600 600## 6 7 8 7.5 420 480 450## # β¦ with 1,199 more rows3
Your turn...
Exercises 3.3: Create some new datasets!
We usually don't do an analysis in an entire dataset. We usually apply some eligibility criteria to find the people who we will analyze. One function we can use to do that in R is filter().
wear_glasses <- filter(nlsy, glasses == 1)nrow(wear_glasses)
## [1] 624summary(wear_glasses$glasses)
## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 1 1 1 1 1 1filter() syntaxfilter() the dataset first, then we give it a series of criteria that we want to subset our data on. case_when(), these criteria should be questions with TRUE/FALSE answers. We'll keep all those rows for which the answer is TRUE.& or just by separating with commas, and we'll get back only the rows that answer TRUE to all of them.yesno_glasses <- filter(nlsy, glasses == 0, glasses == 1)nrow(yesno_glasses)
## [1] 0glasses_great_eyes <- filter(nlsy, glasses == 1, eyesight == 1)nrow(glasses_great_eyes)
## [1] 254When we used case_when(), we got TRUE/FALSE answers when we asked whether a variable was > or < some number, for example.
When we want to know if something is
==!=>=<=We also can ask about multiple conditions with & (and) and | (or).
To get the extreme values of eyesight (1 and 5), we would do something like:
extreme_eyes <- filter(nlsy, eyesight == 1 | eyesight == 5)table(extreme_eyes$eyesight)
## ## 1 5 ## 474 19We could of course do the same thing with a factor variable:
some_regions <- filter(nlsy, region_fact == "Northeast" | region_fact == "South")table(some_regions$region_fact)
## ## Northeast West North Central South ## 206 0 0 411Often we have a number of options for one variable that would meet our eligibility criteria. R's special %in% function comes in handy here:
more_regions <- filter(nlsy, region_fact %in% c("South", "West", "Northeast"))table(more_regions$region_fact)
## ## Northeast West North Central South ## 206 255 0 411If the variable's value is any one of those values, it will return TRUE.
%in%This is just a regular R function that works outside of the filter() function, of course!
7 %in% c(4, 6, 7, 10)
## [1] TRUE5 %in% c(4, 6, 7, 10)
## [1] FALSE%in%We can't say "not in" with the syntax %!in% or something like that. We have to put the ! before the question to basically make it the opposite of what it otherwise would be.
!7 %in% c(4, 6, 7, 10)
## [1] FALSE!5 %in% c(4, 6, 7, 10)
## [1] TRUEnorthcentralers <- filter(nlsy, !region_fact %in% c("South", "West", "Northeast"))table(northcentralers$region_fact)
## ## Northeast West North Central South ## 0 0 333 0R offers a number of shortcuts to use when determining whether values meet certain criteria:
is.na(): is it a missing value? is.finite() / is.infinite(): when you might have infinite values in your datais.factor(): asks whether some variable is a factorYou can find lots of these if you tab-complete is. or is_ (the latter are tidyverse versions). Most you will never find a use for!
my_data <- filter(nlsy, age_bir_cent < 1, sex != 1, nsibs %in% c(1, 2, 3), !is.na(slp_cat_wkdy))summary(select(my_data, age_bir_cent, sex, nsibs, slp_cat_wkdy))
## age_bir_cent sex nsibs slp_cat_wkdy## Min. :-9.4481 Min. :2 Min. :1.000 ideal :109 ## 1st Qu.:-5.4481 1st Qu.:2 1st Qu.:2.000 little: 14 ## Median :-4.4481 Median :2 Median :2.000 lots : 6 ## Mean :-3.8249 Mean :2 Mean :2.174 some : 78 ## 3rd Qu.:-1.4481 3rd Qu.:2 3rd Qu.:3.000 ## Max. : 0.5519 Max. :2 Max. :3.000oth_dat <- filter(nlsy, (age_bir_cent < 1) & (sex != 1 | nsibs %in% c(1, 2, 3)) & !is.na(slp_cat_wkdy))summary(select(oth_dat, age_bir_cent, sex, nsibs, slp_cat_wkdy))
## age_bir_cent sex nsibs slp_cat_wkdy## Min. :-10.4481 Min. :1.000 Min. : 0.000 ideal :306 ## 1st Qu.: -6.4481 1st Qu.:2.000 1st Qu.: 2.000 little: 40 ## Median : -3.4481 Median :2.000 Median : 3.000 lots : 26 ## Mean : -3.8518 Mean :1.817 Mean : 3.982 some :230 ## 3rd Qu.: -1.4481 3rd Qu.:2.000 3rd Qu.: 5.000 ## Max. : 0.5519 Max. :2.000 Max. :16.000forcats cheat sheetselect() helpersmutate()4
Your turn...
Exercises 3.4: Create some new datasets!
Let's
wrangle
our data
Keyboard shortcuts
| β, β, Pg Up, k | Go to previous slide |
| β, β, Pg Dn, Space, j | Go to next slide |
| Home | Go to first slide |
| End | Go to last slide |
| Number + Return | Go to specific slide |
| b / m / f | Toggle blackout / mirrored / fullscreen mode |
| c | Clone slideshow |
| p | Toggle presenter mode |
| t | Restart the presentation timer |
| ?, h | Toggle this help |
| Esc | Back to slideshow |