
Introduction to R
Week 3: Selecting, �ltering, and mutating

Louisa Smith
July 27 - July 31

Let's

wrangle
our data

2 / 43

Making variables in "Base R"

nlsy$region_factor <- factor(nlsy$region)
nlsy$income <- round(nlsy$income)
nlsy$age_bir_cent <- nlsy$age_bir - mean(nlsy$age_bir)
nlsy$index <- 1:nrow(nlsy)
nlsy$slp_wkdy_cat <- ifelse(nlsy$sleep_wkdy < 5, "little",
 ifelse(nlsy$sleep_wkdy < 7, "some",
 ifelse(nlsy$sleep_wkdy < 9, "ideal",
 ifelse(nlsy$sleep_wkdy < 12, "lots"
)
)
)

3 / 43

💰💲💵💸🤑
Very quickly your code can get overrun with dollar signs (and parentheses,
and arrows)

4 / 43

Prettier way to make new variables: mutate()

library(tidyverse)
mutate() is from dplyr
nlsy <- mutate(nlsy, # dataset
 region_factor = factor(region), # new variables
 income = round(income),
 age_bir_cent = age_bir - mean(age_bir),
 index = row_number()
 # could make as many as we want....
)

We can refer to variables within the same dataset without the $ notation

5 / 43

mutate() tips and tricks
You still need to store your dataset somewhere, so make sure to include the assignment
arrow

Good practice to make new copies with different names as you go along
R is smart about data storage, so it won't actually copy all of your data (i.e., you won't
run out of room with 50 copies of almost identical datasets)
You can refer immediately to variables you just made:

nlsy_new <- mutate(nlsy,
 age_bir_cent = age_bir - mean(age_bir),
 age_bir_stand = age_bir_cent / sd(age_bir_cent)
)

6 / 43

My favorite R function: case_when()
I used to write endless strings of ifelse() statements

If A is TRUE, then B; if not, then if C is true, then D; if not, then if E is true, then F; if not, ...

Are you confused yet?!

7 / 43

case_when()

nlsy <- mutate(nlsy, slp_cat_wkdy = case_when(sleep_wkdy < 5 ~ "little",
 sleep_wkdy < 7 ~ "some",
 sleep_wkdy < 9 ~ "ideal",
 sleep_wkdy < 12 ~ "lots",
 TRUE ~ NA_character_ # >= 12
)
)
note that table doesn't show NAs! can be dangerous!
table(nlsy$slp_cat_wkdy, nlsy$sleep_wkdy)

0 2 3 4 5 6 7 8 9 10 11 12 13
ideal 0 0 0 0 0 0 357 269 0 0 0 0 0
little 1 4 14 48 0 0 0 0 0 0 0 0 0
lots 0 0 0 0 0 0 0 0 32 14 1 0 0
some 0 0 0 0 136 326 0 0 0 0 0 0 0

8 / 43

case_when() syntax

Ask a question (i.e., something that will give TRUE or FALSE) on the left-hand side of the ~
sleep_wkdy < 5

If TRUE, variable will take on value of whatever is on the right-hand side of the ~
~ "little"

Proceeds in order ... if TRUE, takes that value and stops
If you want some default value, you can end with TRUE ~ {something}, which every
observation will get if everything else is FALSE

TRUE ~ NA_character_
Must make everything the same type, including missing values (NA_character_, NA_real_
generally)

9 / 43

case_when() example

Which value would someone with sleep_wknd = 8 and sleep_wkdy = 4 go?
What about someone with sleep_wknd = 11 and sleep_wkdy = 4?
What about someone with sleep_wknd = 7 and sleep_wkdy = 7?

nlsy <- mutate(nlsy, total_sleep = case_when(
 sleep_wknd > 8 & sleep_wkdy > 8 ~ 1
 sleep_wknd + sleep_wkdy > 15 ~ 2,
 sleep_wknd - sleep_wkdy > 3 ~ 3,
 TRUE ~ NA_real_
)
)

10 / 43

1 Your turn...

Exercises 3.1: Make some
new variables!

11 / 43

What about factors?!
Let's look at the variable we made describing someone's weekday sleeping habits:

nlsy <- mutate(nlsy, slp_cat_wkdy = case_when(
 sleep_wkdy < 5 ~ "little",
 sleep_wkdy < 7 ~ "some",
 sleep_wkdy < 9 ~ "ideal",
 sleep_wkdy < 12 ~ "lots",
 TRUE ~ NA_character_
)
)

summary(nlsy$slp_cat_wkdy)

Length Class Mode
1205 character character

12 / 43

Character variables aren't very helpful in analysis
If the values are the desired labels, it's pretty straightforward: just use factor()

I'm just going to replace this variable, instead of making a new one,
by giving it the same name a before
nlsy <- mutate(nlsy, slp_cat_wkdy = factor(slp_cat_wkdy))
summary(nlsy$slp_cat_wkdy)

ideal little lots some NA's
626 67 47 462 3

Much better, but what's the deal with that order?

13 / 43

Tries to make working with factors safe and convenient
Functions to make new levels, reorder levels, combine levels,
etc.
All the functions start with fct_ so they're easy to find using
tab-complete!
Automatically loads with library(tidyverse)

forcats package

14 / 43

Reorder factors
The fct_relevel() function allows us just to rewrite the names of the categories out in the
order we want them (safely).

nlsy <- mutate(nlsy, slp_cat_wkdy_ord = fct_relevel(slp_cat_wkdy, "little",
 "some",
 "ideal",
 "lots"
)
)

summary(nlsy$slp_cat_wkdy_ord)

little some ideal lots NA's
67 462 626 47 3

15 / 43

What if you misspell something?

nlsy <- mutate(nlsy, slp_cat_wkdy_ord2 = fct_relevel(slp_cat_wkdy, "little",
 "soome",
 "ideal",
 "lots"
)
)

Warning: Unknown levels in f: soome

summary(nlsy$slp_cat_wkdy_ord2)

little ideal lots some NA's
67 626 47 462 3

You get a warning, and levels you didn't mention are pushed to the end.

16 / 43

Other orders
While amount of sleep has an inherent ordering, region doesn't. Also, the region variable is
numeric, not a character!
From the codebook, I know that:

nlsy <- mutate(nlsy, region_fact = factor(region),
 region_fact = fct_recode(region_fact,
 "Northeast" = "1",
 "North Central" = "2",
 "South" = "3",
 "West" = "4"))
summary(nlsy$region_fact)

Northeast North Central South West
206 333 411 255

17 / 43

Other orders
So now I can reorder them as I wish -- how about from most people to least?

nlsy <- mutate(nlsy, region_fact = fct_infreq(region_fact))
summary(nlsy$region_fact)

South North Central West Northeast
411 333 255 206

Or the reverse of that?

nlsy <- mutate(nlsy, region_fact = fct_rev(region_fact))
summary(nlsy$region_fact)

Northeast West North Central South
206 255 333 411

18 / 43

Add levels
Recall that we made it so that the sleep variable had missing values, perhaps because we
thought they were outliers:

nlsy <- mutate(nlsy, slp_cat_wkdy_out =
 fct_explicit_na(slp_cat_wkdy, na_level = "outlier"))
summary(nlsy$slp_cat_wkdy_out)

ideal little lots some outlier
626 67 47 462 3

19 / 43

Remove levels
Or maybe we want to combine some levels that don't have a lot of observations in them:

nlsy <- mutate(nlsy, slp_cat_wkdy_comb = fct_collapse(slp_cat_wkdy,
 "less" = c("little", "some"),
 "more" = c("ideal", "lots")
)
)
summary(nlsy$slp_cat_wkdy_comb)

more less NA's
673 529 3

20 / 43

Add and remove
Or we can have R choose which ones to combine based on how few observations they have:

nlsy <- mutate(nlsy, slp_cat_wkdy_lump = fct_lump(slp_cat_wkdy, n = 2))
summary(nlsy$slp_cat_wkdy_lump)

ideal some Other NA's
626 462 114 3

Probably not a good idea for factors with in inherent order

There are 25 fct_ functions in the package. The sky's the limit when it comes to
manipulating your categorical variables in R!

21 / 43

2 Your turn...

Exercises 3.2: Make some
new factors!

22 / 43

Selecting the variables you want
We've made approximately 1000 new variables!
You don't want to keep them all. You'll get confused, and when you go to summarize your
data it will take pages.
Luckily there's an easy way to select the variables you want: select()!

nlsy_subs <- select(nlsy, id, income, eyesight, sex, region)
nlsy_subs

A tibble: 1,205 x 5
id income eyesight sex region
<dbl> <dbl> <dbl> <dbl> <dbl>
1 3 22390 1 2 1
2 6 35000 2 1 1
3 8 7227 2 2 1
4 16 48000 3 2 1
5 18 4510 3 1 3
6 20 50000 2 2 1
… with 1,199 more rows 23 / 43

select() syntax

Like mutate(), the first argument is the dataset you want to select from
Then you can just list the variables you want!
Or you can list the variables you don't want, preceded by an exclamation point (!) or a
minus sign (-)
There are also a lot of "helpers"!

select(nlsy_subs, !c(id, region))

A tibble: 1,205 x 3
income eyesight sex
<dbl> <dbl> <dbl>
1 22390 1 2
2 35000 2 1
3 7227 2 2
4 48000 3 2
5 4510 3 1
… with 1,200 more rows 24 / 43

all_of()
Notice that the variable names we used in select() weren't in quotation marks.
Let's say you have a list of column names that you want. Then you can use all_of() to
choose them.

cols_I_want <- c("age_bir", "nsibs", "region")
select(nlsy, all_of(cols_I_want))

A tibble: 1,205 x 3
age_bir nsibs region
<dbl> <dbl> <dbl>
1 19 3 1
2 30 1 1
3 17 7 1
4 31 3 1
5 19 2 3
… with 1,200 more rows

If you don't want an error if they don't exist, use any_of(). 25 / 43

Other select helpers
Do you have a lot of variables that are alike in some way? And you want to find all of them?
Try:

starts_with()
ends_with()
contains()
matches() (like contains, but for regular expressions)
num_range() (for patterns like x01, x02, ...)

select(nlsy, starts_with("slp"))

A tibble: 1,205 x 7
slp_wkdy_cat slp_cat_wkdy slp_cat_wkdy_ord slp_cat_wkdy_or… slp_cat_wkdy_out
<chr> <fct> <fct> <fct> <fct>
1 some some some some some
2 some some some some some
… with 1,203 more rows, and 2 more variables: slp_cat_wkdy_comb <fct>,
slp_cat_wkdy_lump <fct> 26 / 43

Reordering variables
Sometimes you don't want to get rid of the other variables, you just want to move things
around. Then use relocate():
Let's move id to be the first column:

nlsy <- relocate(nlsy, id)
nlsy

A tibble: 1,205 x 26
id glasses eyesight sleep_wkdy sleep_wknd nsibs samp race_eth sex region
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 3 0 1 5 7 3 5 3 2 1
2 6 1 2 6 7 1 1 3 1 1
3 8 0 2 7 9 7 6 3 2 1
4 16 1 3 6 7 3 5 3 2 1
… with 1,201 more rows, and 15 more variables: res_1980 <dbl>, res_2002 <dbl>,
age_bir <dbl>, region_factor <fct>, age_bir_cent <dbl>, index <int>, slp_wkdy
slp_cat_wkdy <fct>, total_sleep <dbl>, slp_cat_wkdy_ord <fct>, slp_cat_wkdy_o
region_fact <fct>, slp_cat_wkdy_out <fct>, slp_cat_wkdy_comb <fct>, 27 / 43

Reordering variables
You can relocate multiple variables to the beginning, or specify where they should show up
Let's move sex and region to be after id:

relocate(nlsy, sex, region, .after = id)

A tibble: 1,205 x 26
id sex region glasses eyesight sleep_wkdy sleep_wknd nsibs samp race_eth
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 3 2 1 0 1 5 7 3 5 3
2 6 1 1 1 2 6 7 1 1 3
3 8 2 1 0 2 7 9 7 6 3
4 16 2 1 1 3 6 7 3 5 3
5 18 1 3 0 3 10 10 2 1 3
… with 1,200 more rows, and 15 more variables: res_1980 <dbl>, res_2002 <dbl>,
age_bir <dbl>, region_factor <fct>, age_bir_cent <dbl>, index <int>, slp_wkdy
slp_cat_wkdy <fct>, total_sleep <dbl>, slp_cat_wkdy_ord <fct>, slp_cat_wkdy_o
region_fact <fct>, slp_cat_wkdy_out <fct>, slp_cat_wkdy_comb <fct>,
slp_cat_wkdy_lump <fct> 28 / 43

Select variables to do something to them
This can get a bit confusing (and "best practices" have recently changed), so we won't go
into details, but you can put all these tools together:

nlsy <- mutate(rowwise(nlsy),
 sleep_avg = mean(c_across(starts_with("sleep"))))
select(nlsy, starts_with("sleep"))

A tibble: 1,205 x 3
sleep_wkdy sleep_wknd sleep_avg
<dbl> <dbl> <dbl>
1 5 7 6
2 6 7 6.5
3 7 9 8
4 6 7 6.5
5 10 10 10
6 7 8 7.5
… with 1,199 more rows

29 / 43

Select variables to do something to them

nlsy <- nlsy %>%
 mutate(across(starts_with("sleep"), ~ .x * 60, .names = "{col}_mins"))
select(nlsy, starts_with("sleep"))

A tibble: 1,205 x 6
sleep_wkdy sleep_wknd sleep_avg sleep_wkdy_mins sleep_wknd_mins sleep_avg_mins
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 5 7 6 300 420 360
2 6 7 6.5 360 420 390
3 7 9 8 420 540 480
4 6 7 6.5 360 420 390
5 10 10 10 600 600 600
6 7 8 7.5 420 480 450
… with 1,199 more rows

30 / 43

3 Your turn...

Exercises 3.3: Create some
new datasets!

31 / 43

Subsetting data
We usually don't do an analysis in an entire dataset. We usually apply some eligibility criteria
to find the people who we will analyze. One function we can use to do that in R is filter().

wear_glasses <- filter(nlsy, glasses == 1)

nrow(wear_glasses)

[1] 624

summary(wear_glasses$glasses)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1 1

32 / 43

filter() syntax

Like the other functions, we give filter() the dataset first, then we give it a series of
criteria that we want to subset our data on.
As with case_when(), these criteria should be questions with TRUE/FALSE answers. We'll
keep all those rows for which the answer is TRUE.
If there are multiple criteria, we can connect them with & or just by separating with
commas, and we'll get back only the rows that answer TRUE to all of them.

yesno_glasses <- filter(nlsy, glasses == 0, glasses == 1)
nrow(yesno_glasses)

[1] 0

glasses_great_eyes <- filter(nlsy, glasses == 1, eyesight == 1)
nrow(glasses_great_eyes)

[1] 254 33 / 43

Logicals in R
When we used case_when(), we got TRUE/FALSE answers when we asked whether a variable
was > or < some number, for example.
When we want to know if something is

equal: ==
not equal: !=
greater than or equal to: >=
less than or equal to: <=

We also can ask about multiple conditions with & (and) and | (or).

34 / 43

Or statements
To get the extreme values of eyesight (1 and 5), we would do something like:

extreme_eyes <- filter(nlsy, eyesight == 1 | eyesight == 5)
table(extreme_eyes$eyesight)

1 5
474 19

We could of course do the same thing with a factor variable:

Northeast West North Central South
206 0 0 411

some_regions <- filter(nlsy, region_fact == "Northeast" | region_fact == "South
table(some_regions$region_fact)

35 / 43

Multiple "or" possibilities
Often we have a number of options for one variable that would meet our eligibility criteria.
R's special %in% function comes in handy here:

more_regions <- filter(nlsy, region_fact %in% c("South", "West", "Northeast"))
table(more_regions$region_fact)

Northeast West North Central South
206 255 0 411

If the variable's value is any one of those values, it will return TRUE.

36 / 43

More %in%
This is just a regular R function that works outside of the filter() function, of course!

7 %in% c(4, 6, 7, 10)

[1] TRUE

5 %in% c(4, 6, 7, 10)

[1] FALSE

37 / 43

Opposite of %in%
We can't say "not in" with the syntax %!in% or something like that. We have to put the !
before the question to basically make it the opposite of what it otherwise would be.

!7 %in% c(4, 6, 7, 10)

[1] FALSE

!5 %in% c(4, 6, 7, 10)

[1] TRUE

northcentralers <- filter(nlsy,
 !region_fact %in% c("South", "West", "Northeast"))
table(northcentralers$region_fact)

Northeast West North Central South 38 / 43

Other questions
R offers a number of shortcuts to use when determining whether values meet certain
criteria:

is.na(): is it a missing value?
is.finite() / is.infinite(): when you might have infinite values in your data
is.factor(): asks whether some variable is a factor

You can find lots of these if you tab-complete is. or is_ (the latter are tidyverse versions).
Most you will never find a use for!

39 / 43

Putting it all together

my_data <- filter(nlsy,
 age_bir_cent < 1,
 sex != 1,
 nsibs %in% c(1, 2, 3),
 !is.na(slp_cat_wkdy))

summary(select(my_data, age_bir_cent, sex, nsibs, slp_cat_wkdy))

age_bir_cent sex nsibs slp_cat_wkdy
Min. :-9.4481 Min. :2 Min. :1.000 ideal :109
1st Qu.:-5.4481 1st Qu.:2 1st Qu.:2.000 little: 14
Median :-4.4481 Median :2 Median :2.000 lots : 6
Mean :-3.8249 Mean :2 Mean :2.174 some : 78
3rd Qu.:-1.4481 3rd Qu.:2 3rd Qu.:3.000
Max. : 0.5519 Max. :2 Max. :3.000

40 / 43

Putting it all together

oth_dat <- filter(nlsy,
 (age_bir_cent < 1) &
 (sex != 1 | nsibs %in% c(1, 2, 3)) &
 !is.na(slp_cat_wkdy))

summary(select(oth_dat, age_bir_cent, sex, nsibs, slp_cat_wkdy))

age_bir_cent sex nsibs slp_cat_wkdy
Min. :-10.4481 Min. :1.000 Min. : 0.000 ideal :306
1st Qu.: -6.4481 1st Qu.:2.000 1st Qu.: 2.000 little: 40
Median : -3.4481 Median :2.000 Median : 3.000 lots : 26
Mean : -3.8518 Mean :1.817 Mean : 3.982 some :230
3rd Qu.: -1.4481 3rd Qu.:2.000 3rd Qu.: 5.000
Max. : 0.5519 Max. :2.000 Max. :16.000

41 / 43

Resources

Here’s an entire paper about working with factors in R.
forcats cheat sheet
Here's more info on the select() helpers
Here are some useful functions for use with mutate()

42 / 43

https://peerj.com/preprints/3163/
https://content.cdntwrk.com/files/aT0xMTI0MjU3JnY9MSZpc3N1ZU5hbWU9ZmFjdG9ycyZjbWQ9ZCZzaWc9ZjhhOTkzMTNlZGIxYTQ1ZGM4NTM4OWZiOTVlNzE3YjI%253D
https://tidyselect.r-lib.org/reference/select_helpers.html
https://dplyr.tidyverse.org/reference/mutate.html#useful-mutate-functions

4 Your turn...

Exercises 3.4: Create some
new datasets!

43 / 43

