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Let's put it

ALL
together
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Agenda
Week 1: The basics ✅

Week 2: Figures ✅

Week 3: Selecting, �ltering, and mutating ✅

Week 4: Grouping and tables ✅

Week 5: Functions ✅

Week 6: Analyze your data

Put everything you've learned into action, and
more!
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my-project/
 ├─ my-project.Rproj
 ├─ README
 ├─ data/
 │   ├── raw/
 │   └── processed/
 ├─ code/
 ├─ results/
 │   ├── tables/
 │   ├── figures/
 │   └── output/
 └─ docs/

An .Rproj file is mostly just a
placeholder. It remembers various
options, and makes it easy to open a
new RStudio session that starts up in the
correct working directory. You never
need to edit it directly.
A README file can just be a text file that
includes notes for yourself or future
users.
I like to have a folder for raw data --
which I never touch -- and a folder(s) for
datasets that I create along the way.

Organization
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source(here::here("code", "functions.R"))

dat <- read_csv(here::here(
             "data", "raw", "data.csv"))

p <- ggplot(dat) + geom_point(aes(x, y))

ggsave(plot = p, 
       filename = here::here(
       "results", "figures", "fig.pdf"))

The here package lets you refer to files
without worrying too much about
relative paths.
Construct file paths with reference to the
top directory holding your .Rproj file.
here::here("data", "raw",
"data.csv") for me, here, becomes
"/Users/louisahsmith/Google
Drive/Teaching/R
course/materials/data/raw/data.csv"

But if I send you this file, it will become
whatever file path you need it to be.

Referring to �les with the here package
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Referring to the here package

here::here()

is equivalent to

library(here)
here()

I just prefer to write out the package name whenever I need it, but you can load the package for your
entire session if you want.
Note that you can refer to any function without loading the whole package this way:

tableone::CreateTableOne()

is the same as

library(tableone)
CreateTableOne() 6 / 42



The source() function
Will run code from another file.

# run the code in script.R, assuming it's in my current working directory
source("script.R")

# run the code in my-project/code/functions.R from wherever I am in my-project
source(here::here("code", "functions.R"))

All the objects will be created, packages loaded, etc. as if you had run the code directly from
the console.
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The source() function
Can even run code directly from a URL.

## Error in eval(ei, envir): object 'new_vals' not found

Remember the first week when I had you generating errors on purpose?

Reading code from another file can make it a bit harder to debug.
But it's nice when you have functions, etc. that you use a lot and want to include them at
the start of every script.

source("https://raw.githubusercontent.com/louisahsmith/intro-to-R-2020/master/s
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Reading in data
You could also begin your scripts by reading in your data via a data-cleaning file with
source().
Each of these have different arguments that will allow you to read in specific columns only,
skip rows, give the variables names, etc. There are also better options out there if your
dataset is really big (look into the data.table or the vroom package), and if you have other
types of data.

library(tidyverse)
dat <- read_csv("data.csv")
dat <- read_table("data.dat")
dat <- read_rds("data.rds")
dat <- readxl::read_excel("data.xlsx")
dat <- haven::read_sas("data.sas7bdat")
dat <- haven::read_stata("data.dta")
dat <- googlesheets4::read_sheet("sheet-id")
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Saving your data
But once you've cleaned your data and created your dataset, you probably just want to save
a copy so you don't need to perform all your data cleaning functions every time you want to
use it.

You can basically do the opposite of most of the read functions: write.
The one I usually use, if I'm creating data for myself, is write_rds(). It creates an R
object you can read in with read_rds(), so you can guarantee nothing will change in
between writing and reading.
If I'm sharing data, I usually use write_csv().

Note: these are the tidyverse versions of the functions, which have better defaults, are
more consistent, and are just more likely to do what you want. The "base R" versions are:
read.csv(), write.csv(), readRDS() and saveRDS().
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Analysis plan
So my process might look like this:
1. Clean the raw data in code/clean_data.R

# read in the raw dataset my collaborators gave me
dat <- read_csv(here::here("data", "raw", "dataset.csv"))

# do whatever cleaning/subsetting I need to
newdat <- dat %>%
  mutate(new_var = var * 2) %>%
  filter(age >= 40) %>%
  select(age, new_var)

# save as an r object for later analysis
write_rds(newdat, here::here("data", "processed", "over_40.rds"))
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Analysis plan

2. In code/main_analysis.R, read in the clean data

dat <- read_rds(here::here("data", "processed", "over_40.rds"))

# run a linear regression model
model <- lm(new_var ~ age, data = dat)

# save the model for making tables and figures later
write_rds(model, here::here("results", "output", "linear_mod.rds"))
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Analysis plan

3. In code/make_tables.R, make some tables

dat <- read_rds(here::here("data", "processed", "over_40.rds"))
mod <- read_rds(here::here("data", "output", "linear_mod.rds"))

# make a table 1
tab1 <- tableone::CreateTableOne(..., data = dat)

# make a table of analysis results
tab2 <- broom::tidy(model)

Depending on my needs, I might read these tables into an RMarkdown document, save
them to a .csv file, etc.
Now on to making figures, etc....
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1 Your turn...

Exercises 6.1: Change the
�le paths so the
document knits.
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Missing values

R uses NA for missing values
Unlike some other statistical software, it will return NA to any logical statement

This makes it somewhat harder to deal with but also harder to make mistakes

3 < NA

## [1] NA

mean(c(1, 2, NA))

## [1] NA

mean(c(1, 2, NA), na.rm = TRUE)

## [1] 1.5

15 / 42



Special NA functions
Certain functions deal with missing values explicitly

vals <- c(1, 2, NA)
is.na(vals)

## [1] FALSE FALSE  TRUE

anyNA(vals)

## [1] TRUE

na.omit(vals)

## [1] 1 2
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nlsy[1, c("id", "glasses", "age_bir")]

## # A tibble: 1 x 3
##      id glasses age_bir
##   <dbl>   <dbl>   <dbl>
## 1     1      -4      -5

nlsy_na <- nlsy %>% na_if(-1) %>% na_if(-2) %>% 
  na_if(-3) %>% na_if(-4) %>% na_if(-5)
nlsy_na[1, c("id", "glasses", "age_bir")]

## # A tibble: 1 x 3
##      id glasses age_bir
##   <dbl>   <dbl>   <dbl>
## 1     1      NA      NA

This is obviously a bit
annoying if you have a lot
of values that indicate
missingness. In that case,
you may want to look into
the naniar package.

Creating NAs with na_if()
You might read in data that has special values to indicate missingness.
In NLSY, -1 = Refused, -2 = Don't know, -3 = Invalid missing, -4 = Valid missing, -5 = Non-interview
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More na_if()
The na_if() strategy is generally the most useful if you're determining NA's over the course
of your analysis, or if you have different NA values for different variables.

# we decide that person 2 is a mistake...
nlsy_bad <- nlsy %>% 
  mutate(id = na_if(id, 2))
nlsy_bad[1:3, c("id", "glasses", "age_bir")]

## # A tibble: 3 x 3
##      id glasses age_bir
##   <dbl>   <dbl>   <dbl>
## 1     1      -4      -5
## 2    NA       0      34
## 3     3       0      19
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Better: read in NA's directly
Or, if you know a priori which values indicate missingness (e.g., "."), you can specify that
when reading in the data.

nlsy <- read_csv(here::here("data", "nlsy.csv"), 
          col_names = colnames_nlsy, skip = 1,
          na = c("-1", "-2", "-3", "-4", "-5"))

You have to write the values as strings, even if they're numbers
Caveat: This way you use the info about the reason for missingness. If that's important,
read in the data first, create a variable for missingness reason (e.g., use fct_recode()),
then changes the values to NA.
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Complete cases
Sometimes you may just want to get rid of all the rows with missing values.

nrow(nlsy)

## [1] 12686

nlsy_cc <- nlsy %>% filter(complete.cases(nlsy))
nrow(nlsy_cc)

## [1] 1436

nlsy2 <- nlsy %>% na.omit()
nrow(nlsy2)

## [1] 1436

Don't do this without good reason!
20 / 42



2 Your turn...

Exercises 6.2: Create and
exclude observations
based on missing values.
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Sharing your results
First: some quick analysis

# load packages
library(tidyverse)
# must install with install.packages if haven't already
library(broom) # for making pretty model output
library(splines) # for adding splines

# read in data
nlsy_clean <- read_rds(here::here("data", "nlsy_clean.rds"))

We're not going into many details because this isn't actually a statistical analysis class,
but the broom package is very helpful for regression model results!
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Quick regression overview
Model formulas will automatically make indicator variables for factors, with the first level the
reference. An intercept will be included unless suppressed with y ~ -1 + x.

# linear regression (OLS)
mod_lin1 <- lm(log_inc ~ age_bir + sex + race_eth, 
                 data = nlsy_clean)
# another way to do linear regression (GLM)
mod_lin2 <- glm(log_inc ~ age_bir + sex + race_eth, 
                family = gaussian(link = "identity"),
                data = nlsy_clean)
# logistic regression
mod_log <- glm(glasses ~ eyesight + sex + race_eth,
               family = binomial(link = "logit"),
               data = nlsy_clean)
# poisson regression
mod_pois <- glm(nsibs ~ sleep_wkdy + sleep_wknd,
                  family = poisson(link = "log"),
                  data = nlsy_clean)
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Quick regression overview, cont.

Create interactions with * (will automatically include main terms too).
Create polynomial terms with, e.g., I(x^2).
Create splines with the splines package and the ns() functions (or other
packages/functions).

mod_big <- glm(log_inc ~ sex * age_bir +
                         nsibs + 
                         I(nsibs^2) +
                         ns(sleep_wkdy, knots = 3),
               family = gaussian(link = "identity"),
               data = nlsy_clean)

Like the tidyverse packages, you don't need to quote the variable names or use
data$variable notation in model formulas
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Look at results

summary(mod_log)

## 
## Call:
## glm(formula = glasses ~ eyesight + sex + race_eth, family = binomial(link = "logit"), 
##     data = nlsy_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4275  -1.0825  -0.8343   1.2221   1.6261  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                     -0.51260    0.06317  -8.114 4.89e-16 ***
## eyesightVery Good               -0.07920    0.05359  -1.478   0.1394    
## eyesightGood                    -0.07146    0.06188  -1.155   0.2481    
## eyesightFair                    -0.21488    0.09105  -2.360   0.0183 *  
## eyesightPoor                     0.10558    0.18152   0.582   0.5608    
## sexFemale                        0.69281    0.04493  15.420  < 2e-16 ***
## race_ethNon-Hispanic Black      -0.28460    0.06493  -4.383 1.17e-05 *** 25 / 42



Look at results
Or use the tidy() function from the broom package, which nicely summarizes all sorts of
models.

# from the broom package
tidy(mod_log)

## # A tibble: 8 x 5
##   term                            estimate std.error statistic  p.value
##   <chr>                              <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)                      -0.513     0.0632    -8.11  4.89e-16
## 2 eyesightVery Good                -0.0792    0.0536    -1.48  1.39e- 1
## 3 eyesightGood                     -0.0715    0.0619    -1.15  2.48e- 1
## 4 eyesightFair                     -0.215     0.0911    -2.36  1.83e- 2
## 5 eyesightPoor                      0.106     0.182      0.582 5.61e- 1
## 6 sexFemale                         0.693     0.0449    15.4   1.21e-53
## 7 race_ethNon-Hispanic Black       -0.285     0.0649    -4.38  1.17e- 5
## 8 race_ethNon-Black, Non-Hispanic   0.285     0.0594     4.80  1.60e- 6
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coef(mod_log)[6]

## sexFemale 
## 0.6928082

tidy(mod_log) %>% slice(6) %>% pull(estimate)

## [1] 0.6928082

Pull off a coef�cient

coef(mod_log)

##                     (Intercept)               eyesightVery Good 
##                     -0.51260479                     -0.07920222 
##                    eyesightGood                    eyesightFair 
##                     -0.07145996                     -0.21487546 
##                    eyesightPoor                       sexFemale 
##                      0.10557518                      0.69280825 
##      race_ethNon-Hispanic Black race_ethNon-Black, Non-Hispanic 
##                     -0.28460369                      0.28527712

Reminder: if you have a model  etc., coefficient 6 is really !β0 + β1x1+ β5
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Pull off a coef�cient by name

coef(mod_log)["sexFemale"]

## sexFemale 
## 0.6928082

tidy(mod_log) %>% filter(term == "sexFemale") %>% pull(estimate)

## [1] 0.6928082
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Creating new values
Since it's just a tibble/dataframe, you can create new columns!

# 95% confidence interval
res_mod_log <- mod_log %>% tidy() %>% 
  mutate(lci = estimate - 1.96 * std.error,
         uci = estimate + 1.96 * std.error)
res_mod_log

## # A tibble: 8 x 7
##   term                            estimate std.error statistic  p.value    lci     uci
##   <chr>                              <dbl>     <dbl>     <dbl>    <dbl>  <dbl>   <dbl>
## 1 (Intercept)                      -0.513     0.0632    -8.11  4.89e-16 -0.636 -0.389 
## 2 eyesightVery Good                -0.0792    0.0536    -1.48  1.39e- 1 -0.184  0.0258
## 3 eyesightGood                     -0.0715    0.0619    -1.15  2.48e- 1 -0.193  0.0498
## 4 eyesightFair                     -0.215     0.0911    -2.36  1.83e- 2 -0.393 -0.0364
## 5 eyesightPoor                      0.106     0.182      0.582 5.61e- 1 -0.250  0.461 
## 6 sexFemale                         0.693     0.0449    15.4   1.21e-53  0.605  0.781 
## 7 race_ethNon-Hispanic Black       -0.285     0.0649    -4.38  1.17e- 5 -0.412 -0.157 
## 8 race_ethNon-Black, Non-Hispanic   0.285     0.0594     4.80  1.60e- 6  0.169  0.402
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Calculating ORs
Since these are results from a logistic regression, we'll probably want to exponentiate the
coefficients and their CIs.

res_mod_log <- res_mod_log %>% select(term, estimate, lci, uci) %>%
  filter(term != "(Intercept)") %>%
  # exponentiate all three columns at once!
  mutate(across(c(estimate, lci, uci), exp))
res_mod_log

## # A tibble: 7 x 4
##   term                            estimate   lci   uci
##   <chr>                              <dbl> <dbl> <dbl>
## 1 eyesightVery Good                  0.924 0.832 1.03 
## 2 eyesightGood                       0.931 0.825 1.05 
## 3 eyesightFair                       0.807 0.675 0.964
## 4 eyesightPoor                       1.11  0.779 1.59 
## 5 sexFemale                          2.00  1.83  2.18 
## 6 race_ethNon-Hispanic Black         0.752 0.662 0.854
## 7 race_ethNon-Black, Non-Hispanic    1.33  1.18  1.49 30 / 42



Con�dence intervals with str_glue()
Now we want to combine the lower and upper CI limits.

res_mod_log %>% select(term, estimate, lci, uci) %>%
  filter(term != "(Intercept)") %>%
  mutate(ci = str_glue("({lci}, {uci})"))

## # A tibble: 7 x 5
##   term                            estimate   lci   uci ci                                 
##   <chr>                              <dbl> <dbl> <dbl> <glue>                             
## 1 eyesightVery Good                  0.924 0.832 1.03  (0.831734362089001, 1.0261744158234
## 2 eyesightGood                       0.931 0.825 1.05  (0.824698936937584, 1.0510786843918
## 3 eyesightFair                       0.807 0.675 0.964 (0.674797666860532, 0.9642462833711
## 4 eyesightPoor                       1.11  0.779 1.59  (0.778639992096712, 1.5862247743449
## 5 sexFemale                          2.00  1.83  2.18  (1.8307856398006, 2.18337382956281)
## 6 race_ethNon-Hispanic Black         0.752 0.662 0.854 (0.662416384318316, 0.8544080013463
## 7 race_ethNon-Black, Non-Hispanic    1.33  1.18  1.49  (1.18383962963298, 1.49449918933821

We can paste text and R code (within {}) together with str_glue(). Everything goes in quotation
marks.
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More str_glue()
You can paste any R expression you want evaluated in the curly braces.
You can break up chunks of your string to make it easier to read in your code.

str_glue(
  "The intercept from the regression is ",
  "{round(coef(lm(income~sex, data = nlsy_clean))[1])} and a random ",
  "number that I generated is {round(rnorm(1, 0, 1), 3)}."
)

## The intercept from the regression is 14880 and a random number that I generated is -1.469.

More functions are available in the glue package. For example, you could write a nice list of the
regions in the data like this:

glue::glue_collapse(levels(nlsy_clean$region), sep = ", ", last = ", and ")

## Northeast, North central, South, and West
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Better: Create a function
We want to take these values and print "OR (95% CI LCI, UCI)" for each one. Let's make a
function to put together everything we've done so far!

ci_func <- function(estimate, lci, uci) {
  OR <- round(exp(estimate), 2)
  lci <- round(exp(lci), 2)
  uci <- round(exp(uci), 2)
  to_print <- str_glue("{OR} (95% CI {lci}, {uci})")
  return(to_print)
}

Let's test on some made-up values:

ci_func(.2523421, -.142433, .851234)

## 1.29 (95% CI 0.87, 2.34)
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From start to �nish

new_mod <- glm(glasses ~ eyesight + sex, family = binomial(link = "logit"),
               data = nlsy_clean)
tidy(new_mod) %>%
  filter(term != "(Intercept)") %>% # we don't care about this term
  mutate(lci = estimate - 1.96 * std.error,
         uci = estimate + 1.96 * std.error,
         OR = ci_func(estimate, lci, uci),
         p.value = scales::pvalue(p.value)) %>% # for formatting p-values
  select(term, OR, p.value)

## # A tibble: 5 x 3
##   term              OR                       p.value
##   <chr>             <glue>                   <chr>  
## 1 eyesightVery Good 0.9 (95% CI 0.81, 1)     0.042  
## 2 eyesightGood      0.88 (95% CI 0.78, 0.99) 0.041  
## 3 eyesightFair      0.74 (95% CI 0.62, 0.88) <0.001 
## 4 eyesightPoor      1.01 (95% CI 0.71, 1.44) 0.959  
## 5 sexFemale         1.99 (95% CI 1.82, 2.17) <0.001

If you want 2 decimal places no matter what, use something like format(round(x, digits = 2), nsmall = 2)
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Important R lesson
Whatever you want to write code to do, someone else has already probably done it
The tidy() function could have actually done the exponentiating and confidence interval
calculating for us. See help(tidy.glm). But much more fun to do it ourselves 😉

tidy(new_mod, conf.int = TRUE, exponentiate = TRUE)

## # A tibble: 6 x 7
##   term              estimate std.error statistic  p.value conf.low conf.high
##   <chr>                <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
## 1 (Intercept)          0.655    0.0430   -9.85   6.59e-23    0.602     0.712
## 2 eyesightVery Good    0.898    0.0531   -2.04   4.18e- 2    0.809     0.996
## 3 eyesightGood         0.882    0.0612   -2.05   4.06e- 2    0.782     0.995
## 4 eyesightFair         0.738    0.0902   -3.37   7.58e- 4    0.618     0.880
## 5 eyesightPoor         1.01     0.181     0.0512 9.59e- 1    0.708     1.44 
## 6 sexFemale            1.99     0.0446   15.4    8.85e-54    1.82      2.17

If you're wondering why these confidence intervals differ slightly from the last slide, these are likelihood-based and ours were
Wald confidence intervals. Don't worry if you don't know what this means!
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Final challenge
Data analysis from start to �nish

1. Prepare and organize your project
2. Load and clean the data
3. Do some exploratory analysis (table 1, figure)
4. Do some regression analysis (results table, figure)

You can do it!
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Prepare your project
Do something totally outside the folders you've used for the course material!

File -> New Project -> New Directory -> New Project
Name it something like NLSY and put it in an appropriate folder on your computer
Within that folder, make new folders as follows:

NLSY/
 ├─ NLSY.Rproj
 ├─ data/
 │   ├── raw/
 │   └── processed/
 ├─ code/
 └── results/
     ├── tables/
     └── figures/
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Prepare the data

Download the linked dataset and save into data/raw.
Create a new file and save it as clean_data.R.
In that file, read in the NLSY data and load any packages you need. Make sure you
replace any missing values with NA. Hint: there are extra missing values in the some
variables.
Add factor labels as necessary. Select the factor variables plus income, id, and 2 others of
your choosing. Then restrict to complete cases and people with incomes < $30,000. Make
a variable for the log of income (replace with NA if income <= 0).
Also in that file, save your new dataset as a .rds file to the data/processed folder.
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Do some exploratory analysis

Create a file called create_figure.R. In this file, read in the cleaned dataset. Load any
packages you need. Then make a ggplot figure of your choosing to show something
about the distribution of the data. Save it to the results/figures folder as a .png file
using the ggsave() function.
Create a file called table_1.R. In this file, read in the cleaned dataset and use the
tableone package to create a table 1 with the variables of your choosing. Modify the
following code to save it as a .csv file. Open it in Excel/Numbers/Google Sheets/etc. to
make sure it worked.

tab1 <- CreateTableOne(...) %>% print() %>% as_tibble(rownames = "id")
write_csv(tab1, ...)
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Do some regression analysis

In another file called lin_reg.R, read in the data and run the following linear regression:
lm(log_inc ~ sex + race_eth +{other variables of your choosing}, data = nlsy).
Modify the CI function to produce a table of results for a linear regression. Add an
argument digits =, with a default of 2, to allow you to choose the number of digits
you'd like. Save it in a separate file called functions.R. Use source() to read in the
function at the beginning of your script.
Save a table of your results as a .csv file. Make the names of the coefficients nice!
Using the results, use ggplot to make a figure. Use geom_point() for the point estimates
and geom_errorbar() for the confidence intervals. It will look something like this:

ggplot(data) + 
  geom_point(aes(x = , y = )) + 
  geom_errorbar(aes(x = , ymin = , ymax = ))

Save that figure as a .pdf using ggsave(). You may want to play around with the height
= and width = arguments to make it look like you want. 40 / 42



Appendix: some other packages I like but haven't
mentioned

lubridate: Work with dates and times really easily. (https://lubridate.tidyverse.org)
janitor: Helps clean variable names, etc. (http://sfirke.github.io/janitor/)
furrr: Speed up your code with parallel processing.
(https://davisvaughan.github.io/furrr/)
shiny: Make interactive apps. I made http://selection-bias.louisahsmith.com in shiny.
(http://shiny.rstudio.com)
drake: Pipeline for analysis. (https://docs.ropensci.org/drake)
rvest: Scrape data from websites. (https://rvest.tidyverse.org)
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3 Your turn...

Exercises 6.3: Work
through the challenge!
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